An Efficient Randomized Quasi-Monte Carlo Algorithm for the Pareto Distribution
نویسندگان
چکیده
This paper studies a new randomized quasi-Monte Carlo method for estimating the mean and variance of the Pareto distribution. In many Monte Carlo simulations, there are some stability problems for estimating the population Pareto variance by using the sample variance. In this paper, we propose a randomized quasi-random number generator [quasiRNG] to generate Pareto random samples, such that the sample mean and sample variance estimators gain more efficiency. The efficiency of this generator relative to the popular linear congruential random number generator [LC-RNG] is studied by using the simulation mean square errors. We also compare the results of the Kolmogorov-Smirnov goodness-of-fit tests using these two sample generators.
منابع مشابه
Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM
In this paper we investigate an efficient implementation of the Monte Carlo EM algorithm based on Quasi-Monte Carlo sampling. The Monte Carlo EM algorithm is a stochastic version of the deterministic EM (Expectation-Maximization) algorithm in which an intractable E-step is replaced by a Monte Carlo approximation. Quasi-Monte Carlo methods produce deterministic sequences of points that can signi...
متن کاملEfficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration
As opposed to Monte Carlo integration the quasi-Monte Carlo method does not allow for an error estimate from the samples used for the integral approximation and the deterministic error bound is not accessible in the setting of computer graphics, since usually the integrands are of unbounded variation. We investigate the application of randomized quasi-Monte Carlo integration to bidirectional pa...
متن کاملEfficient implementations of the Multivariate Decomposition Method for approximating infinite-variate integrals
In this paper we focus on efficient implementations of the Multivariate Decomposition Method (MDM) for approximating integrals of ∞-variate functions. Such ∞-variate integrals occur for example as expectations in uncertainty quantification. Starting with the anchored decomposition f = ∑ u⊂N fu, where the sum is over all finite subsets of N and each fu depends only on the variables xj with j ∈ u...
متن کاملEffective and efficient algorithm for multiobjective optimization of hydrologic models
[1] Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementar...
متن کاملThe Florida State University College of Arts and Science Scrambled Quasirandom Sequences and Their Applications
Quasi-Monte Carlo methods are a variant of ordinary Monte Carlo methods that employ highly uniform quasirandom numbers in place of Monte Carlo’s pseudorandom numbers. Monte Carlo methods offer statistical error estimates; however, while quasi-Monte Carlo has a faster convergence rate than normal Monte Carlo, one cannot obtain error estimates from quasi-Monte Carlo sample values by any practical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Monte Carlo Meth. and Appl.
دوره 13 شماره
صفحات -
تاریخ انتشار 2007